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ABSTRACT

Disentangled feature representation is essential for data-efficient learning. The
feature space of deep models is inherently compositional. Existing β-VAE-based
methods, which only apply disentanglement regularization to the resulting embed-
ding space of deep models, cannot effectively regularize such compositional fea-
ture space, resulting in unsatisfactory disentangled results. In this paper, we for-
mulate the compositional disentanglement learning problem from an information-
theoretic perspective and propose a recursive disentanglement network (RecurD)
that propagates regulatory inductive bias recursively across the compositional
feature space during disentangled representation learning. Experimental studies
demonstrate that RecurD outperforms β-VAE and several of its state-of-the-art
variants on disentangled representation learning and enables more data-efficient
downstream machine learning tasks.

1 INTRODUCTION

Recent progress in machine learning demonstrates the ability to learn disentangled representations
is essential for data-efficient learning, such as controllable image generation, image manipulation,
and domain adaptation (Suter et al., 2019; Zhu et al., 2018; Peng et al., 2019; Gabbay & Hoshen,
2021; 2019). β-VAE (Higgins et al., 2017) and its variants are the most investigated approaches
for disentangled representation learning. Recent works on β-VAE-based methods introduce various
inductive biases as regularization terms and directly apply them on the resulting embedding space of
deep models, such as the bottleneck capacity constraint (Higgins et al., 2017; Burgess et al., 2018),
total correlation among variables (Kim & Mnih, 2018; Chen et al., 2018), and the mismatch between
aggregated posterior and prior (Kumar et al., 2017), aiming to balance among representation capac-
ity, independence constraints, and reconstruction accuracy. Indeed, as demonstrated by Locatello
et al. (2020; 2019), unsupervised disentanglement is fundamentally impossible without explicit in-
ductive biases on models and data sets.

However, our study shows that existing β-VAE-based methods may not be able to learn satisfac-
tory disentangled representations even for fairly trivial cases. This is due to the fact that the feature
spaces of deep models have inherently compositional structures, i.e., each complex feature is a com-
position of primitive features. However, existing methods with regularization terms solely applied to
the resulting embedding space cannot effectively propagate disentangled regularization across such
compositional feature space. As shown in Figure 1, applying the standard β-VAE to the widely
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Figure 1: Illustration of the negative impact on ignoring the compositional structure of the repre-
sentation space using dSprites dataset: (a) Illustration of z (from embedding space) and m (from
intermediate layers). (b) z is not disentangled sufficiently when m is not disentangled sufficiently.
(c) The disentanglement of z improves, as that of m improves.

used dataset dSprites (Matthey et al., 2017), we visualize the resulting representation z, as well as
its compositional low-level representations m extracted from the previous layer (as shown in Fig-
ure 1(a)), and evaluate the independence between each pair of m and each pair of z, respectively †.
Figure 1(b) and Figure 1(c) show that the disentanglement quality of low-level features m may im-
pact the resulting representation z in terms of disentanglement quality. This study demonstrates the
potential benefit to regularize the compositional feature space of deep models during disentangled
representation learning.

This work aims to tackle the compositional disentanglement learning problem. First, we formu-
late disentangled representation learning from an information-theoretic perspective, and introduce
a new learning objective covering three essential properties for learning disentangled representa-
tions: sufficiency, minimal sufficiency, and disentanglement. Theoretical analysis shows that the
proposed learning objective is a general form of β-VAE and several of its state-of-the-art variants.
Next, we extend the proposed learning objective to cover the disentanglement representation learn-
ing problem in the compositional feature space. Governed by the proposed learning objective, we
present Recursive Disentanglement Network (RecurD), a compositional disentanglement learning
method, which directs the disentanglement learning process across the compositional feature space
by applying regulatory inductive bias recursively through the feed-forward network. We argue that
the recursive propagation of inductive bias through the feed-forward network imposes a sufficient
condition of disentangled representation learning. Empirical studies demonstrate that RecurD out-
performs β-VAE (Higgins et al., 2017) and several other variants of VAE (Burgess et al., 2018; Kim
& Mnih, 2018; Chen et al., 2018; Kumar et al., 2017) on disentangled representation learning and
achieves more data-efficient learning in downstream machine learning tasks.

2 COMPOSITIONAL DISENTANGLEMENT LEARNING

In this section, we first formulate disentanglement learning from the information-theoretic perspec-
tive by introducing three key properties and show such formulation is a general form of the opti-
mization objectives of β-VAE and several of its variants. Next, we extend the principled objective
to the compositional feature space to tackle the compositional disentanglement learning problem.

2.1 DISENTANGLEMENT LEARNING OBJECTIVE

The challenge of representation learning can be formulated as finding a distribution p (z|x) that maps
original data x ∈ X into a representation z with fixed amount of variables z = {z1, . . . , zn} (Bengio
et al., 2013). The key intuition of z is to capture minimal sufficient information in a disentangled
manner, given the reconstruction task x ≈ x̂. We denote the representation learning process as a
Markov Chain for which x̂→ x→ z, which means z depends on x̂ only through x, i.e., p (z|x) =
p (z|x, x̂) (see also, (Cover, 1999; Achille & Soatto, 2018)). The principled properties of z are
defined as follows:

Definition 1. Sufficiency: a representation z of x for x̂ is sufficient if I (x, x̂) = I (z, x̂).

†The independence between two components ci and cj is measured by the normalized mutual informa-
tion (Chen et al., 2018). Whenever NMI(ci; cj) = I(ci; cj)/H(c) = 0, ci and cj are independent (disen-
tangled).
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For the reconstruction task, z is sufficient if it can successfully reconstruct x by x̂. The difference
between I (x; x̂) and I (z; x̂) is computed as follows: I (x; x̂)− I (z; x̂) = I (x; x̂|z) = H (x̂|z)−
H (x̂|x). Given the reconstruction task x ≈ x̂, H (x̂|x) is constant and independent to z, so the
sufficient property can be optimized by minimizing H (x̂|z) (Federici et al., 2020; Dubois et al.,
2020).
Definition 2. Minimal Sufficiency: a representation z of x is minimal sufficient if I (x; z) = I (z; x̂).

A minimal sufficient z encodes the minimum amount of information about x required to reconstruct
x̂ (Cover, 1999; Achille & Soatto, 2018). Since I (z; x̂) equals to I (x; x̂) when z is sufficient,
the difference is computed as I (x; z) − I (z; x̂) = I (x; z) − I (x; x̂). Given the reconstruction
task x ≈ x̂, I (x; x̂) is constant and independent to z, so the minimal sufficiency property can be
optimized by minimizing I (x; z).
Definition 3. Disentanglement: a representation denoted as z = {z1, . . . , zn} is disentangled if∑
j 6=i I (zi; zj) = 0.

From the definition of mutual information, I (zi; zj) = H (zi) − H (zi|zj) denotes the reduction
of uncertainty in zi when zj is observed (Cover, 1999). If any two components zi and zj are
disentangled, changes to zi have no influence on zj , which means I (zi; zj) = 0.

A representation satisfying all these properties can be found by introducing two Lagrange multipliers
λ1 and λ2 for two constrained expected properties with respect to the fundamental sufficiency prop-
erty. The principled objective of disentanglement learning is to minimize the following objective:

L = H (x̂|z) + λ1I (x; z) + λ2
∑
j 6=i

I (zi, zj) . (1)

The above objective can be interpreted as the reconstruction error, plus two regularizers that yield
an optimally disentangled representation. The principled objective also helps us analyze and un-
derstand the success of recently developed β-VAE-based methods. These methods operate with
an encoder with parameter φ and a decoder with parameter θ, to induce the joint distributions
q (x, z) = qφ (z|x) q (x) and p (x, z) = pθ (x|z) p (z), respectively, where p (z) is a fixed prior
distribution. The learning objective of β-VAE contains the reconstruction error and KL divergence
between the variational posterior and prior. To understand the relationship of learning objectives
between Equation 1 and β-VAE-based methods, we decompose I (x; z) (Kim & Mnih, 2018) and
estimate an upper bound for

∑
j 6=i I (zi, zj) (Te Sun, 1980; 1975), then we assign different weights

as follows:
λ1I (x; z) + λ2

∑
j 6=i

I (zi, zj)

≤ λaEx [KL (q (z|x) ‖p (z))] + λbKL

(
q (z) ‖

n∏
j=1

q (zj)

)
+ λc

n∑
j=1

KL (q (zj) ‖p (zj)) .
(2)

As shown in Table 1, the learning objectives of β-VAE and its four variants can be regarded as
specific cases of Equation 1, i.e., they assign different weights to our regularization terms, which
can balance among latent variables capacity, independence constraints, and reconstruction accuracy,
leading to successful disentangled representation learning (Zhao et al., 2017; Li et al., 2020). More
details can be found in Appendix B. However, in these works, the inductive bias toward disentan-
glement is only applied to the embedding space of z, ignoring the need of disentanglement during
feature composition in feed-forward networks.

Table 1: Deriving the learning objectives of β-VAE and its four variants as specific cases of Equa-
tion 1.

Method β-VAE FactorVAE β-TCVAE DIP-VAE InfoVAE
Weight λa = β. λa = 1, λa = 1, λa = 1, λa = 1− α,

Relation λb = γ. λb = β. λb = λc = λ. λb + λc = α+ λ− 1.

2.2 COMPOSITIONAL OBJECTIVE

Considering an encoder with L layers to encode original data x into disentangled representation z.
Let us denote ml as the input features of the l-layer, which are divided into groups of features, i.e.,
ml = ∪jml

j , where ml
j is the j-th feature subset.
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We formulate the compositional relation between features from two consecutive layers as follows:
ml+1
j = Layer

(
ml ×wl

j

)
. Layer can be applicable to commonly used neural network layers,

e.g., the convolution layer in computer vision tasks. The compositional relation is achieved by a
composition matrix wl ∈ Rdl×dl+1 , so that features in ml are divided into dl+1 groups after passing
through all compositional vectors (wl

js). Note that ml+1
j is only related to the subset of features

from ml selected by wl
j .

Similar to Section 2.1, we assume that the learning process of ml+1 depends on ml through original
data x, denoted as the Markov chain: ml → x → ml+1. It can be written as ml+1 → x → ml

according to the conditional independence implied by the Markovity (Cover, 1999). Consider two
output features ml+1

i ,ml+1
j ∈ ml+1 and their corresponding input feature subsets ml

i,m
l
j ∈ ml,

we define key notions as follows:
Definition 4. Compositional Disentanglement: ml

i and ml
j are disentangled if I

(
ml
i;m

l
j

)
= 0 .

A disentangled representation of ml
i and ml

j may improve the disentanglement quality between
ml+1
i and ml+1

j . Similar to Definition 3, we can achieve compositional disentanglement by mini-
mizing I

(
ml
i;m

l
j

)
.

Definition 5. Compositional Minimal Sufficiency: Assume that the learning process of ml+1
j is

denoted by the Markov chain: ml+1
j → x→

(
ml
i,m

l
j

)
. Given the original data x, an input feature

set ml
j for the output feature ml+1

j is minimal sufficient if I
(
x;ml+1

j

)
= I

(
ml
j ;m

l+1
j

)
.

For the output feature ml+1
j , the input feature set ml

j is sufficient and another input feature set ml
i

is superfluous when ml
j is able to capture all information of ml+1

j as well as the original data x.
Furthermore, according to Data-Processing Inequality (DPI) (Cover, 1999; Achille & Soatto, 2018)
in the Markov chain, there exists an inequality that:

I
(
x;ml+1

j

)
≥ I

(
ml+1
j ;ml

j

)
+ I

(
ml+1
j ;ml

i

)
− I

(
ml
i;m

l
j

)
, (3)

where the difference between I
(
x;ml+1

j

)
and I

(
ml+1
j ;ml

j

)
is equivalent to the difference be-

tween I
(
ml+1
j ;ml

i

)
and I

(
ml
i;m

l
j

)
. Therefore, matching I

(
ml+1
j ;ml

i

)
to I

(
ml
i;m

l
j

)
can yield

a minimal sufficient representation ml
j for ml+1

j . Based on the definition of compositional disen-
tanglement, we can optimize the minimal sufficiency by forcing I

(
ml+1
j ;ml

i

)
to be 0. More details

can be found in Appendix B.

To learn disentangled representation via effectively regularizing the compositional feature space, we
augment the principled learning objective (Equation 1) with compositional regularizers. Therefore,
the compositional learning objective for disentangled representation is defined as follows:

L = H
(
x̂|mL+1

)︸ ︷︷ ︸
sufficient

+λ1

 L∑
l=2

dl+1∑
j 6=i

I
(
ml
i;m

l+1
j

)
︸ ︷︷ ︸

minimal sufficient

+λ2

L+1∑
l=2

dl+1∑
j 6=i

I
(
ml
i,m

l
j

)
︸ ︷︷ ︸

disentangled

, (4)

where mL+1 denotes the final disentangled representation z. Our intuition is that disentangled
learning for compositional feature space could benefit the disentanglement learning for high-level
representations.

3 RECURSIVE DISENTANGLEMENT NETWORK

We now describe a learning method with the goal of optimizing the compositional disentanglement
learning objective. This method, called Recursive Disentanglement Network (RecurD), propagates
inductive bias (disentanglement) recursively across the compositional feature space.

3.1 MODEL ARCHITECTURE

As shown in Figure 2, RecurD contains an encoder and a decoder to learn the disentangled repre-
sentation z of data x and to reconstruct x̂, where the encoder contains multiple Recursive Modules
and the decoder is a Deconvolutional Neural Network (Zeiler & Fergus, 2014).

4



Published as a conference paper at ICLR 2022

Figure 2: Recursive Disentanglement Network

The first Recursive Module of the encoder is implemented by a multi-channel convolutional net-
work (Lawrence et al., 1997) to encode the original image x. Following the notation in Section 2.2,
the output of the 1-st Recursive Module is denoted as m2, which is also the input of 2-nd Re-
cursive Module. As for the l-th (l ≥ 2) Recursive Module, it contains (1) a Router R to learn a
composition matrix wl from the input features ml to decompose ml into subsets; and (2) a Group-
of-Encoders (GoE) layer consisting of n encoders to induce the output feature ml+1.

Inspired by the Gate of Mixture-of-Experts (Shazeer et al., 2017; Fedus et al., 2021) on parameter
selection for each input, we present a Router with TopK to learn the compositional relation. In
detail, the Router takes ml as input and compute composition matrix wl via learning similarity:

wl = softmax
(
TopK

(
R
(
ml
)
, k
))
, R
(
ml
)

= softmax
([

ml
] [
ml
]T) ◦ v, and

TopK
(
R
(
ml
)
, k
)

=

{
R
(
ml
)
ij
, ifR

(
ml
)
ij

is in the top k elements of R
(
ml
)
·j

−∞, otherwise.

(5)

Here, R (m) denotes the similarity matrix and v is a learning matrix learned by a linear layer. ◦
denotes Hadamard product. TopK is the compositional strategy to determine whether input feature
ml
ij belongs to the input feature set of ml+1

j , and k is a hyperparameter. The GoE layer consists
of dl+1 parallel encoders

{
Enc1, . . . , Encdl+1

}
to generate the output features ml+1, where each

encoder is implemented by a convolutional neural network with specific parameters:

ml+1
j = Encj

(
ml ×wl

j

)
. (6)

Then, ml+1 is obtained by concatenating the outputs from each encoder, which is converted directly
to the input of the l + 1-th Recursive Module. Note that the output of L-th Recursive Module is
the learned disentangled representation z. Finally, the Decoder Dec takes z as input to obtain the
reconstructed input x̂: x̂ = Dec (z).

3.2 LEARNING OF RECURD

As mentioned in Equation 4, the learning objective of RecurD governs the recursive disentanglement
learning across the compositional feature space. As shown by related works, a precise estimation
of mutual information in the high dimensional space is important for accurately estimating the loss.
According to the recent progresses, the mutual information between two representations can be
maximized by using any sample-based differentiable mutual information lower bound. Similar to
the work of Federici et al. (2020); Hjelm et al. (2019); Wen et al. (2020), we utilize MINE es-
timators (Belghazi et al., 2018) to estimate the mutual information. This approach introduces an
auxiliary parametric model Estimator Net which is jointly optimized during the training procedure
using re-parametrized samples from the posterior distribution.

4 RELATED WORK

β-VAE-based methods introduce various regularization terms and directly apply them on the result-
ing embedding space. Higgins et al. (2017) proposed β-VAE method by introducing a constraint
β over the KL divergence between the inferred distribution qφ(z|x) and its prior–an isotropic unit
Gaussian. Burgess et al. (2018) found that the network specializes in the factor that contributes most
to a small reconstruction error, with a limited channel capacity. Thus, they proposed the Annealed-
VAE, an extension of β-VAE, which gradually adds more latent encoding capacity by enforcing the
KL divergence to be at a controllable value C. Kim & Mnih (2018) analyzed the disentanglement
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performance of β-VAE by breaking down the regularization term into two components. One is Total
Correlation (TC) (Watanabe, 1960), which encourages the marginal distribution of representations
to be factorial. The other is mutual information I(x; z), which reduces the amount of information
about x stored in z. Based on the decomposition, they proposed FactorVAE to relax the regular-
ization of I(x; z) while directly penalizing the TC term. Similarly, Chen et al. (2018) proposed
β-TCVAE by decomposing the TC penalty as the dependence among variables and the distance be-
tween each variable’s posterior and prior. Since TC is intractable, both FactorVAE and β-TCVAE
use approximation methods. Another TC-related approach is DIP-VAE (Kumar et al., 2017), whose
designers argued that the estimation of TC requires additional parameters and suffers from vanishing
gradients. Therefore, DIP-VAE optimizes the moments distance between the aggregated posterior
and a factorized prior instead of estimating TC. The above methods improved over β-VAE by ap-
plying inductive biases directly to the high-level latent variable space. However, the feature space
of deep models is compositional in nature. Existing variants of β-VAE cannot effectively apply
disentanglement regularization across such compositional feature space, and yield inferior disentan-
glement in representation learning. Our approach diverges from prior works by taking a principled
information-theoretic approach to formulate and analyze the compositional disentanglement feature
structure.

Recent works on hierarchical VAEs introduce layer-wise disentanglement regularization to learn
conditioning structures across multi-layer latent variables, such as VampPrior (Tomczak & Welling,
2018), Ladder VAEs (Sønderby et al., 2016), and NVAE (Vahdat & Kautz, 2020). In these hierar-
chical model structures, e.g., the cross-layer residual connection structure in NVAE and VampPrior,
inter-layer regularization is less of a focus. The latent variables of a preceding layer serve as shared
inputs to the next layer, which introduces information redundancy and hence impairs representa-
tion disentanglement. In contrast, the proposed compositional objective optimizes the statistical
independence of inter-layer and intra-layer latent variables simultaneously, thereby minimizing the
information redundancy of inter-layer information sharing and improving disentanglement quality.

5 EXPERIMENTS

This section presents both quantitative and qualitative experiments to evaluate RecurD in terms of
disentanglement quality and data efficiency on downstream tasks.

5.1 PERFORMANCE OF DISENTANGLEMENT LEARNING

We compare the disentanglement learning performance of RecurD with β-VAE and its state-of-the-
art variants, including β-VAE (Higgins et al., 2017), Annealed-VAE (Burgess et al., 2018), Factor-
VAE (Kim & Mnih, 2018), β-TCVAE (Chen et al., 2018), DIP-VAE (Kumar et al., 2017). More
experimental results can be found in Appendix E.

Datasets: We consider two datasets in which each image is obtained by a deterministic function
of ground-truth factors: dSprites (Matthey et al., 2017) and 3DShapes (Burgess & Kim, 2018).
dSprites contains 737, 280 binary 64 × 64 images of 2D shapes with 5 ground truth factors, i.e., 3
shapes, 6 scales, 40 orientations, 32 x-positions, 32 y-position. 3DShapes contains 480, 000 RGB
64×64×3 images of 3D shapes with 6 ground truth factors, i.e., 4 shapes, 8 scales, 15 orientations,
10 floor hues, 10 wall hues, 10 object hues. For all experiments, we use a 9:1 training to testing data
ratio, following earlier work (Kumar et al., 2017; Locatello et al., 2019). More details on network
architecture and hyperparameter settings are included in Appendix D.

Evaluation Metrics for Disentanglement: There is no standard metric for evaluating disentangle-
ment (Zhou et al., 2021; Ridgeway & Mozer, 2018), and most existing metrics involve the estimation
of a variable-factor matrix relating the factors of variation to the learned representations. In the ex-
periments, we consider three widely used metrics: Separated Attribute Predictability (SAP) (Kumar
et al., 2017), Mutual Information Gap (MIG) (Chen et al., 2018) and Disentanglement, Complete-
ness, and Informativeness (DCI) (Eastwood & Williams, 2018). DCI contains three metrics for
disentanglement (DCI-D), Completeness (DCI-C) and Informativeness (DCI-I), respectively. Due
to the space limitation, we present the results of DCI-D and include the results on DCI-C and DCI-
I in the Appendix E. Overall, these metrics can comprehensively evaluate RecurD from different
disentanglement measurements.
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5.1.1 QUANTITATIVE RESULTS

For quantitative analysis, we conduct three sets of experiments: 1) evaluating the average perfor-
mance of disentanglement score via three evaluation metrics; 2) measuring the trade-off among
reconstruction, minimal sufficiency and disentanglement with mini-batch samples; and 3) analyzing
the influence of compositional objective for disentanglement learning via the three properties.

Table 2 compares the reconstruction error and three widely-used disentanglement metrics of RecurD
and five other methods on the dSprites and 3DShapes datasets. Compared with all the baselines,
RecurD achieves much lower reconstruction error as well as higher SAP, MIG, and DCI scores in
most of the cases. It is important to point out that the reconstruction error of β-VAE increases
as β increases (stronger disentanglement regularization), which indicates that β-VAE comprises
reconstruction error for disentanglement. However, RecurD achieves better in both reconstruction
and disentanglement, demonstrating the superiority of the proposed compositional learning objective
and the recursive disentanglement network.

Figure 3 shows scatter plots relating Minimal Sufficiency and Disentanglement to reconstruction er-
ror (Sufficiency), where each point represents a mini-batch of data. Here, we compute the minimal
sufficiency score using I(x; z) and present it by the area of each point. In all baseline methods, we
observe that smaller scatters are correlated with higher reconstruction errors and higher disentangle-
ment scores. The reason is that β-VAE and its variants only place disentanglement regularization on
the embedding space of z which imposes a limit on the capacity of the information channel (Higgins
et al., 2017), so that features which are important for reconstruction but harmful for disentanglement
may lose during training, leading to compromised reconstruction quality. However, RecurD reveals
the necessity of disentanglement during feature composition in feed-forward networks and induces
effective information compression. Therefore, compared to all the baselines, the representations
from RecurD obtain better disentanglement and minimal sufficiency without degrading reconstruc-
tion quality.

Figure 4 shows the impact of the number of Recursive Modules in disentanglement learning. We
evaluate three RecurD variants on the principled properties, including RecurD 0, RecurD 1 and
RecurD 2 with 1, 2 and 3 Recursive Modules, respectively. And we report the values correspond-

Table 2: Three widely used evaluation scores and reconstruction error on the test sets for dSprites and
3Dshapes. Boldface indicates the best results, i.e., reconstruction error or disentanglement scores.

dataset dSprites 3DShapes
Reconst. Error SAP MIG DCI-D Reconst error SAP MIG DCI-D

β-VAE(β = 4) 0.0066 0.0284 0.2617 0.1191 0.0216 0.1463 0.2519 0.4682
β-VAE(β = 16) 0.0094 0.0242 0.2241 0.1820 0.0544 0.1488 0.2629 0.4528
β-VAE(β = 60) 0.0127 0.0445 0.1432 0.1291 0.0624 0.1041 0.2402 0.4317
Annealed-VAE 0.0171 0.0311 0.1177 0.1449 0.0811 0.0730 0.2217 0.4279
Factor-VAE 0.0228 0.0436 0.2594 0.1955 0.0800 0.1331 0.2630 0.4491
β-TCVAE 0.0162 0.0352 0.1585 0.1774 0.0312 0.0364 0.2070 0.4487
DIP-VAE 0.0213 0.0261 0.0731 0.1038 0.0213 0.2013 0.3108 0.4853
RecurD 0.0047 0.0502 0.2707 0.3841 0.0083 0.1979 0.3105 0.5804

Figure 3: Reconstruction error vs. disentanglement performance. Scatters located at the left top
indicate better performance. The area of each scatter represents the minimal sufficiency score esti-
mated by I(x; z), and smaller area indicates better performance.
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ing to the three terms in our compositional learning objective on the training sets. We observe that
RecurD 1 and RecurD 2 perform much better than RecurD 0 on the optimization of minimal
sufficiency and disentanglement. In addition, during the early stage of training, the performance of
RecurD 2 improves much faster than RecurD 1. This experiment demonstrates that the recursive
propagation of inductive bias through the feed-forward network improves disentangled representa-
tion learning.

5.1.2 QUALITATIVE RESULTS

Figure 4: The performance of RecurD with varying number
of recursive modules on the principled properties.

For qualitative analysis, we present
the latent traversals of RecurD on two
datasets in Figure 5, in which we vary
a single variable learned by an en-
coder in GoE while keeping all oth-
ers fixed. For images in 3DShapes,
the latent traversals show that Re-
curD is able to successfully capture
all the six factors of variation. For
images in dSprites, we observe that
RecurD is able to discover x-position,
y-position and scale (continuous vari-
ables). More importantly, RecurD
can, to some extent, discover shape
and orientation (discrete variables),
which have been proved to be strug-
gling for many other methods (Ku-
mar et al., 2017; Kim & Mnih, 2018;
Locatello et al., 2019). The reason is that β-VAE and its variants encourage independence among
variables via controlling the information capacity of z and matching the posterior p(z|x) to an
isotropic unit Gaussian. However, learning discrete variables would require using a discrete prior
instead of Gaussian (Kim & Mnih, 2018). On the other hand, RecurD is able to model both dis-
crete and continuous factors by directly disentangling based on the three principled properties on
the entire compositional feature space, leading to stronger representation capability.

5.1.3 ABLATION AND PARAMETER DEPENDENCE STUDY

In this section, we evaluate the impacts of hyperparameters in both learning objective and model
architecture. First, we study the impact of compositional learning objective with varying regular-
ization coefficients (λ1 and λ2) of minimal sufficiency and disentanglement. Then, we evaluate the
influence of hyperparameter k — the group size in the GoE of Recursive Module. Figure 6 (Re-
curD with varying λ1, λ2 and k) shows the scatter plots of disentanglement score (SAP) along with
reconstruction error on the test sets of dSprites and 3DShapes.

As shown in Figure 6, larger penalties on both minimal sufficiency and disentanglement yield higher
disentanglement score and lower reconstruction error, demonstrating the importance of the minimal
sufficiency term and the disentanglement term in Equation 1. Note that RecurD with λ2 = 0 is

Figure 5: First row: original images. Second
row: reconstructions. Remaining rows: recon-
structions of latent traversals.

Figure 6: Ablation study on λ1, λ2 and group
size k. Note that RecurD with λ2 = 0 reduces to
β-VAE with the compositional architecture.
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reduced to a standard β-VAE with the compositional architecture (as I(x; z) is an lower bound of
KL(p(z|x)‖p(z))), which underperforms RecurD, indicating that an explicit penalty on disentan-
glement is important for disentangled representation learning. As for the group size in the GoE —
k, it is not surprising that when k increases, RecurD has lower reconstruction errors, with a slightly
inferior disentanglement performance. The reason is that a dense composition of feature space can
help the model maintain sufficient information but make it difficult to disentangle latent variables.
RecurD with k = 1 results in poor performance on both reconstruction and disentanglement, in-
dicating that over-emphasizing decomposition in the feature space may fail to preserve sufficient
information. More results are presented in the Appendix E.

5.2 PERFORMANCE OF DOWNSTREAM TASKS

Figure 7: Performance comparison of RecurD
and baselines on the standard classification task
(left) and the domain generalization task (right).
Each model is trained by varying ratios of training
data. The dotted line represents the performance
of a single-layer neural network.

In this section, we compare the performance
of RecurD and five baseline methods by mea-
suring their data efficiency on two downstream
tasks: a standard classification task on the
MNIST dataset and a domain generalization
task on the MNIST-Rotation dataset (Ghifary
et al., 2015). MNIST-Rotation is a synthetic
dataset consisting of 6 domains, each contain-
ing 1, 000 images of the 10 digits randomly se-
lected from the training set of MNIST, with 6
rotation degrees: 0◦, 15◦, 30◦, 45◦, 60◦ and
75◦. For both tasks, we set the training sets of
different proportions: 20%, 40%, 60%, 80%,
and 100%, to evaluate the classification perfor-
mance of RecurD and the baselines with differ-
ent amounts of training data. For the domain
generalization problem, we follow the previous
works (Li et al., 2017; Balaji et al., 2018; Du et al., 2020) with the same train-test split strategy and
the leave-one-domain-out strategy, i.e., we take the samples from one domain as the target domain
for testing, and the samples from the remaining domains as the source domain for training.

Figure 7 reports the average accuracy of different methods on the same test set. We can observe that
all methods achieve decent data efficiency on both tasks, i.e., without much performance degradation
even with 20% of training data, suggesting that the learning process of disentangled representation
can more effectively capture information from the inputs. However, β-VAE and its variants do not
achieve satisfactory classification accuracy for either task compared to a single-layer neural network.
The reason is that β-VAE and its variants obtain the disentangled representation by limiting the ca-
pacity of information channels, thus they tend to only maintain features that contribute more to dis-
entanglement, which may lose informative features that contribute more to classification. Compared
to the baselines, RecurD achieves consistently better performance in both tasks, especially on the
harder domain generalization task. The reason is that RecurD can learn disentangled representations
without sacrificing the reconstruction performance, confirming the hypothesis that compositional
disentanglement learning yields better generalization and more data-efficient representations. We
believe that the informative disentangled representations emerge when the right balance is achieved
between sufficient information preservation and minimal sufficient information learned in a disen-
tangled manner.

6 CONCLUSION

This paper has described a solution to the compositional disentangled representation learning prob-
lem. We first presented a general information-theoretic formulation of disentanglement representa-
tion learning, and then extended it to the compositional feature space. We then described RecurD,
a recursive disentanglement network, which propagates regulatory inductive bias recursively across
the compositional feature space. RecurD outperforms β-VAE and its state-of-the-art variants on
disentangled representation learning and achieves more data-efficient learning in downstream tasks.
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A PROPERTY OF MARKOV CHAIN AND MUTUAL INFORMATION

This section lists the related properties of Markov chain and mutual information used in this work.

Markov Chain

Consider three random variables a, b and c coming from a joint distribution p(a,b, c), if the con-
ditional distribution of c depends only on a and is conditionally independent of b, the variables can
form a Markov chain in the order denoted as: b → a → c. Specially, the joint distribution can be
written as (Cover, 1999):

p(a,b, c) = p(a)p(b|a)p(c|a). (7)

Markovity implies a conditional independence between c and b when a is observed, the reason is:

p(c,b|a) =
p(a,b, c)

p(a)
=
p(c,a)p(b|a)

p(a)
= p(c|a)p(b|a). (8)

By rewriting the conditional independence, the Markov chain of b→ a→ c also implies c→ a→
b as:

p(b, c|a) =
p(a,b, c)

p(a)
=
p(b,a)p(c|a)

p(a)
= p(c|a)p(b|a). (9)

Mutual Information

1. Positivity: I(a;b) ≥ 0; I(a;b|c) ≥ 0.

2. Chain Rule: I(a;b, c) = I(a;b) + I(a; c|b)

3. I(a;b) = H(a)−H(a|b) = 0 if and only if a and b are independent.

I(a;b) = H(a)−H(a | b)

= E
[
log

1

p(a)

]
− E

[
log

1

p(a|b)

]
= E

[
log

p(a|b)

p(a)

p(b)

p(b)

]
= E

[
log

p(a,b)

p(a)b

]
= D (p(a,b)‖p(a))× p(b))

≥ 0

(10)

4. Data-Processing Inequality (DPI): If three random variables a, b and c coming from a joint
distribution p(a,b, c) can form a Markov chain in the order denoted as: b→ a→ c, then I(b;a) ≥
I(b; c). (Theorem 2.8.1 in Cover (1999))

B LEARNING OBJECTIVES DECOMPOSITION

In this section, we decompose the proposed learning objective to analyze the relationship of learning
objectives between Equation 1 and β-VAE-based methods. Let p(x) denote the true distribution
of the data, and pφ(z|x) and pθ(x|z) denote the unknown distributions that we need to estimate,
parametrized by an encoder with φ and a decoder with θ.

B.1 DECOMPOSITION OF MINIMAL SUFFICIENCY

Minimal Sufficiency is defined as z can encode the minimum amount information of x required to
reconstruct x̂, optimized by minimize I(x; z). Inspired from the work of Chen et al. (2018), we can
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decompose the minimal sufficiency by assuming the prior p(z) as a factorized Gaussian as:

I (x; z) = Eq(x,z) [KL (q (x, z) ‖q (z) p (x))]

= Eq(x,z)
[
log

q (x, z)

q (z) p (x)

]
= Eq(x,z)

[
log

q (z|x) p (x)

q (z) p (x)

]

= Ep(x)

Eq(z|x)
log q (z|x)− log q (z) + log p (z)− log p (z) + log

∏
j

q (zj)− log
∏
j

q (zj)


= Eq(x,z)

[
log

q (z|x)

q (z)

]
− Eq(z)

∑
j

log
q (zj)

p (zj)

− Eq(z)

[
log

q (z)∏
j q (zj)

]

= Ep(x) [KL (q (z|x) ‖p (z))]−
∑
j

KL (q (zj) ‖p (zj))−KL

q (z) ‖
∏
j

q (zj)


(11)

The first term is KL divergence between inferred posterior and prior, usually as a penalty term of
β-VAEs for disentangling. The second term is the dimension-wise KL divergence, which represents
the distance between each latent dimension to the prior. The third term is the Total Correlation
referring to the independence among variables.

B.2 ESTIMATION OF DISENTANGLEMENT

Disentanglement is defined as the independence between any two variables, optimized by minimiz-
ing
∑
i 6=j I(zi; zj), which is an lower bound of Total Correlation.

The concept of Total Correlation (TC) was described by McGill (1954) and formally formulated by
Watanabe (1960) to evaluate the mutual independence of multi-variant variables. Assume a set of z
of random variables z1, . . . , zn. The TC in z is expressed as:

C (z1, . . . , zn) =

n∑
i=1

H (zi)−H (z1, z2, . . . , zn) , (12)

where H (z1, z2, . . . , zn) denotes the joint entropy. Furthermore, according to the work of Te Sun
(1980; 1975), the relation between TC and mutual information can be described as:

C (z) =

n∑
i=1

H (zi)−H (z) = −
∑
n≥2

∆H (z) (13)

The general ∆H (z) is defined as Fano’s multiple mutual information among variables. In the case
of n = 2, it reduces to Shannon’s mutual information and in the case of n = 3, it coincides with
McGill’s mutual information. The formulation of TC can be simplified as:

C (z1, . . . , zn) =
∑
j 6=i

I (zi; zj) +
∑
k 6=j 6=i

∆H (zi; zj ; zk) + . . .+ ∆H (z1; . . . ; zn) (14)

In VAEs, to measure dependence for multiple latent variables, TC is computed as
DKL

(
q (z) ‖

∏
j q (zj)

)
. Therefore, the proposed disentanglement

∑
i 6=j I (zi; zj) is a lower

bound of TC.
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B.3 RELATION WITH OTHER WORKS

After decomposing the minimal sufficiency and estimating the disentanglement by TC, we can com-
bine two regularizers as:

λ1I (x; z) + λ2
∑
j 6=i

I (zi; zj)

≤ λ1Ep(x) [KL (q (z|x) ‖p (z))]− λ12
∑
j

KL (q (zj) ‖p (zj))− λ13 KL

q (z) ‖
∏
j

q (zj)


+ λ2

∑
j

KL (q (zj) ‖p (zj))

= λ1Ep(x) [KL (q (z|x) ‖p (z))] + (λ2 − λ12)
∑
j

KL (q (zj) ‖p (zj))− λ13 KL

q (z) ‖
∏
j

q (zj)


= λaEp(x) [KL (q (z|x) ‖p (z))] + λb

∑
j

KL (q (zj) ‖p (zj)) + λc KL

q (z) ‖
∏
j

q (zj)


(15)

Therefore, by assigning different weights to the decomposed term, we can establish the relationship
between the proposed information-theoretic objective and existing β-VAE variants, which will pro-
vide insights regarding the capabilities and limitations of existing methods, and further motivate the
proposed work.

Specially, the objective function of β-TCVAE is I (x, z) + KL
(
q (z) ‖

∏
j q (zj)

)
+∑

j KL (q (zj) ‖p (zj)). If we decompose the I (x; z) of β-TCVAE as: KL (q (z|x) ‖p (z)) −
KL

(
q (z) ‖

∏
j q (zj)

)
−
∑
j KL (q (zj) ‖p (zj)), the regularizer term of β-TCVAE can be writ-

ten as: αKL (q (z|x) ‖p (z))+(β − α)KL
(
q (z) ‖

∏
j q (zj)

)
+(γ − α)

∑
j KL (q (zj) ‖p (zj)).

Since α = γ = 1 in β-TCVAE, therefore when λc = 0, the last line of Equation 15 is equivalent to
β-TCVAE.

C PROOF OF COMPOSITIONAL MINIMAL SUFFICIENCY

In this section, we prove the statements reported in the section 2.2 of the paper.

Property:

(P1): Data-processing inequality in the markov chain: considering the markov chain b → a → c,
then I (b,a) ≥ I (b; c). (Theorem 2.8.1 (Cover, 1999).)

(P2): Chain rule for mutual information: I (a;b, c) = I (a;b)+I (a; c|b). (Theorem 2.5.1 (Cover,
1999).)

(P3): Decompositon of conditional mutual information. (Proposition B.1. (Federici et al., 2020).)

Conditional independence assumptions:

The Markov Chain ml+1
j → x →

(
ml
i,m

l
j

)
, implies the conditional independence between ml+1

j

and
(
ml
i,m

l
j

)
when x is observed.

Proof:

I
(
x;ml+1

j

) (P1)

≥ I
(
ml+1
j ;ml

i,m
l
j

)
(P2)
= I

(
ml+1
j ;ml

j

)
+ I

(
ml+1
j ;ml

i |ml
j

)
(P3)
= I

(
ml+1
j ;ml

j

)
+ I

(
ml+1
j ;ml

i

)
− I

(
ml
i;m

l
j

)
.

(16)
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D EXPERIMENTAL DETAILS

For all baselines, we use a Convolutional Neural Network for the encoder, and a Deconvolutional
Neural Network for the decoder. Specially, for Factor-VAE, we use a 6-layer Multi-Layer Perceptron
for the discriminator, with the leaky ReLU as the activation on per layer, and we set γ as 6.4. For
β-VAE, we use a set of β = {4, 16, 60}. Annealed-VAE uses γ = 1000 with a linearly increasing
C from 0.5 nats to a 25.0 nats). β-TCVAE uses α = γ = 1 and β = 4. DIP-VAE is implemented
by the parameters λod = 100 and λd = 10.

For RecurD, we implement RecurD 0 as the same encoder/decoder architecture with all baselines,
as shown in Table 3. As for RecurD 1 and RecurD 2, we implement the same decoder architec-
ture with all baselines, and the details about the encoder of RecurD 1 and RecurD 2 are shown
in Table 4 and Table 5. Following the previous work, we use negative cross-entropy to compute
reconstruction error, which represents sufficiency in our work. As for the computation of minimal
sufficiency and disentanglement, we implement the MINE estimator by 4-layer Multi-Layer Percep-
tron, similar with the work of Federici et al. (2020). As for the hyperparameter in our model, we vary
λ1 and λ2 in the set {0.1, 0.2, 0.5, 1, 2, 5, 10, 50} while fixing λ1 = 1 and λ1 = 2 for both datasets.
During training, we use Adam optimiser with learning rate 1e − 4, β1 = 0.9, β2 = 0.999 for pa-
rameter updates. Specially, we utilize RecurD 1 on dSprites, 3DCars and 3DShapes, and RecurD 2
on CelebA.

Table 3: Encoder and Decoder architecture for all baselines and RecurD 0.
Input dSprites (3DShapes): 64× 64× 1(3) Images

Encoder

Conv: k=4, s=2, p=1, channel=32, ReLU
Conv: k=4, s=2, p=1, channel=32, ReLU
Conv: k=4, s=2, p=1, channel=64, ReLU
Conv: k=4, s=2, p=1, channel=64, ReLU
FC: 128 (256)
FC: 2× 8

Decoder

Input: z ∈ R8

FC: 128, ReLU
FC: 4× 4× 64, ReLU
Deconv: k=4, s=2, p=1, channel=64, ReLU
Deconv: k=4, s=2, p=1, channel=32, ReLU
Deconv: k=4, s=2, p=1, channel=32, ReLU
Deconv: k=4, s=2, p=1, channel=1(3), ReLU

Output: 64× 64× 1 (3) Reconst. Images

Table 4: Encoder architecture of RecurD 1.
Input 64× 64× 1 (3) Image

0-th Recursive Module
Router(v) -

GoE
4× [Conv: k=4, s=2, p=1, channel=32, ReLU]
Conv: k=4, s=2, p=1, channel=64, ReLU

1-th Recursive Module
Router(v) FC, 8, ReLU

GoE 8×
[

Conv : k=4, s=2, p=1, channel=16,ReLU
FC, 16; FC, 2× 1

]
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Table 5: Encoder architecture of RecurD 2.
Input 64× 64×1 (3) Image

0-th Recursive Module
Router(v) -
GoE 2× [Conv: k=4, s=2, p=1, channel=32, ReLU ]

1-th Recursive Module
Router(v) FC, 4, ReLU
GoE 4 × [Conv: k=4, s=2, p=1, channel=16, ReLU]

2-th Recursive Module
Router(v) FC, 16, ReLU

GoE 16×
[

Conv : k=4, s=2, p=1, channel=16,ReLU
FC, 16; FC, 2× 1

]

E ADDITIONAL EXPERIMENTS

This section reports additional experiments, which draw similar conclusions as that of Section 5.

E.1 QUANTITATIVE RESULTS

The first set of quantitative results is the supplementary results of disentanglement score DCI-C and
DCI-I on dSprites and 3DShapes. Table 6, Figure 8 and Figure 9 show the results of disentanglement
score with reconstruction error, which also show RecurD can achieve a better trade-off between
reconstruction and disentanglement.

Figure 8: Reconstruction error vs. disentanglement performance on dSprites. Scatters located at the
left top indicate better performance.

Figure 9: Reconstruction error vs. disentanglement performance on 3DShapes. Scatters located at
the left top indicate better performance.

The second set is the performance comparison results with three additional baselines, i.e, Info-
GAN (Chen et al., 2016), Control-VAE and NVAE. InfoGAN (Chen et al., 2016) maximizes the
mutual information between the small subset of the latent variables and the observations to increase
the interpretability of the latent representation. Control-VAE (Shao et al., 2020) dynamically tunes
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Table 6: DCI-C, DCI-I scores and reconstruction error on the test sets for dSprites and 3DShapes.
Bold face indicates the best results, i.e., reconstruction error and disentanglement scores.

dataset dSprites 3DShapes

Reconst error DCI-C DCI-I Reconst error DCI-C DCI-I

β-VAE(β = 4) 0.0066 0.1148 0.2181 0.0216 0.4463 0.1982
β-VAE(β = 16) 0.0094 0.1575 0.2087 0.0544 0.4691 0.1828
β-VAE(β = 60) 0.0127 0.1261 0.1769 0.0624 0.4215 0.1641
Annealed-VAE 0.0171 0.1793 0.1663 0.0811 0.4419 0.1682
Factor-VAE 0.0228 0.1375 0.1699 0.0800 0.4419 0.1707
β-TCVAE 0.0162 0.1988 0.1660 0.0312 0.4516 0.1774
DIP-VAE 0.0213 0.0968 0.1496 0.0213 0.4621 0.1961

RecurD 0.0047 0.3835 0.2222 0.0083 0.5668 0.2014

the weight β on the KL term to achieve a good trade-off between disentanglement and reconstruc-
tion quality. NVAE (Vahdat & Kautz, 2020) optimizes high-quality image generation via global
correlation capturing across multi-layer latent variables.

We compare with Info-GAN Control-VAE and NVAE on three datasets, including dSprites,
3Dshapes and 3Dcars. The 3DCars (Reed et al., 2015) exhibits different car models from Fi-
dler et al. (2012) under different camera viewpoints. The evaluation method is the disentanglement
score MIG. Table 7 show that NVAE and VampPrior can achieve comparable reconstruction error
compared to RecurD. However, their disentanglement qualities are not as good as RecurD, because
RecurD additionally regularizes the inter-layer information sharing and alleviates the information re-
dundancy of multiple layers. This experiment demonstrates the superiority of the proposed RecurD
method in disentanglement compared to existing hierarchical VAEs.

Table 7: MIG score and reconstruction error on the test sets for dSprites, 3DShapes and 3DCars.
Bold face indicates the best results, i.e., reconstruction error and disentanglement scores.

dataset dSprites 3DShapes 3DCars

Reconst. Error MIG Reconst. Error MIG Reconst. Error MIG

β-VAE(β = 4) 0.0066 0.2617 0.0216 0.2519 0.0376 0.1015
InfoGAN - 0.1598 - 0.1874 - 0.1083
Control-VAE 0.0102 0.2455 0.0357 0.2630 0.0257 0.1583
NVAE 0.0041 0.0043 0.0078 0.0081 0.0118 0.0034

RecurD 0.0047 0.2707 0.0083 0.3105 0.0132 0.1762

E.2 ABLATION STUDY

In this section, we report the supplementary results of ablation study. The first is to study the impact
of compositional learning objective with varying regularization coefficients (λ1 and λ2) of minimal
sufficiency and disentanglement. Figure E.2 and Figure E.2 show the scatter plots of disentan-
glement scores along with reconstruction error on the test sets of dSprites, with varying λ1, λ2.
Figure 12 and Figure 13 show the results on the 3DShapes.

The second set is to evaluate the influence of hyperparameter k — the group size in the GoE of
Recursive Module. Figure E.2 and Figure E.2 show the influence of varying k for disentanglement
scores and reconstruction error on the test sets of dSprites. Figure E.2 and Figure E.2 show the
results on the 3DShapes.

The third set is to evaluate the disentanglement metrics on the preceding layers. We compute MIG
on mL−1 and mL−2 of RecurD on 3DShapes. As shown in Table 8, high-level representations have
higher MIG than that of low-level representations (z > mL−1 > mL−2). These results confirm that
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the recursive propagation of inductive bias through the feed-forward network improves disentangled
representation learning.

The last set is to evaluate the impact of architecture of Gate-of-Encoders (GoE), we conduct three
variant GoEs, including Linear: GoE is implemented as a linear layer with softmax; Fix: GoE is
implemented as fix assignment, i.e., we split ml in d+ 1 equal slices; and Att: GoE is implemented
as a multi-head attention layer (the head is fixed as 8). As shown in Table 9, this study demonstrates
that GoE indeed fits well with the disentanglement process.

Figure 10: Ablation study on λ1 and λ2 on dSprites.

Figure 11: Ablation study on λ1 and λ2 on dSprites.

Table 8: Comparison of MIG on z, mL−1 and mL−2.

mL−2 mL−1 z(mL) Reconst. Error

MIG 0.1081 0.2892 0.3105 0.0083
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Figure 12: Ablation study on λ1 and λ2 on 3DShapes.

Figure 13: Ablation study on λ1 and λ2 on 3DShapes.

Figure 14: Ablation study on k on dSprites.
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Figure 15: Ablation study on k on dSprites.

Figure 16: Ablation study on k on 3DShapes.

Figure 17: Ablation study on k on 3DShapes.
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Table 9: Ablation study on the GoE architecture.
Linear Fix Att RecurD

MIG 0.2539 0.2617 0.2604 0.3105

Reconst. Error 0.0176 0.0116 0.0095 0.0083

E.3 QUALITATIVE RESULTS

In this section, we report the qualitative samples of traversal images on three datasets, including
dSprites(Figure 18), 3DShapes(Figure 19) and CelebA(from Figure 20 to Figure 25).

Specifically, on CelebA, we tentatively increase the dimensionality of latent variables of RecurD
(from 16 to 32) by doubling the output of the last layer of each encoder from a single latent variable
to a 2-dimensional variable.

Figure 18: Traversal samples on dSprites.

Figure 19: Traversal samples on 3DShapes.

Figure 20: Traversal samples on CelebA
(Azimuth).

Figure 21: Traversal samples on CelebA
(Background Color).
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Figure 22: Traversal samples on CelebA
(Face Color).

Figure 23: Traversal samples on CelebA
(Face Width).

Figure 24: Traversal samples on CelebA
(Gender).

Figure 25: Traversal samples on CelebA
(Smile).

E.4 EVALUATION OF COMPUTATIONAL COSTS

In this section, we evaluate the computational complexity of our model on 3DShapes and CelebA.
The evaluation metrics consist of multiply-accumulate operation (MACs), the model parameters
(Params), evaluation time (Eva. time) and converge time (all models converge to the same recon-
struction error as β-VAE, denoted as Con. time).

In terms of parameter efficiency, as shown in Table 10, the recursive disentanglement network itself
only contains 0.826 million parameters (RecurD 2 w/o MINEs), which are comparable to Beta-VAE.
Most of the parameters of RecurD 2 are contributed by using MINE estimator. Specifically, in the
initial implementation (RecurD 2/specific MINEs), each pair of outputs of encoders is equipped
with a specific MINE model, which contributes 7.214 million parameters. We further optimize the
design by using shared MINE within the same feature category, which can effectively reduce the
total number of parameters down to 1.325 million (RecurD 2/shared MINEs).

Table 10: Complexity comparison of three models on 3DShapes and CelebA.

Dataset Method MACs(G) Params(M) Eva. time(s) Con. time(s)

3DShapes

RecurD 1 3.466 3.672 0.005124 27.1212
RecurD 2 3.469 3.694 0.005354 23.3197
beta-VAE 3.144 0.769 0.003283 32.5251
Factor-VAE 3.401 4.779 0.003389 40.6231

CelebA

RecurD 1 3.944 7.935 0.01065 29.7421
RecurD 2 3.957 8.040 0.01087 36.6408
RecurD 2 w/o MINEs 2.960 0.826 - -
RecurD 2/shared MINEs 3.654 1.325 0.01072 36.6402
beta-VAE 3.145 0.769 0.01030 45.2067
Factor-VAE 3.402 4.792 0.01005 48.9939
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